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We present a theoretical and experimental study of the flow of non-
Newtonian fluids over the surface of a rotating flat disk, with con-
sideration of lag.

Equipment with moving centrifugal attachments is
used extensively for numerous industrial applications
[1—4]. Such equipment employs rotors made up of a
shaft carrying attachments such as a flat disk, a cone,
a sphere, etc.

The liquids processed in such equipment normally
form film flows over the open surfaces of the attach-~
ments.

Centrifugal machinery is used to process the most
diverse materials which, in terms of their rheological
properties, can be classified as Newtonian fluids, vis-
coplastics, and non-Newtonian fluids.

The efficiency achieved with the rotating equipment
depends in great measure on the quantitative relation-
ships governing the motion of the fluids over the sur-
faces of the rotating parts.

When the fluid is flowing over such a rotating part,
we must take into consideration its possible lag re-
lative to the surface, and this may amount to 30—50%
of the circumferential velocity [5]. Such lag reduces
the discharge velocity of the liquid from the equipment
and thickens the film.

Until now, no one has dealt with the flow of a non-
Newtonian fluid over a rotating part from the stand-
point of possible lag. Such considerations have been
applied only to viscous liquids [6]. Flows of visco~
plastics and non-Newtonian fluids over a rotating part
have been studied, but only without consideration of
the lag [7, 8].

We will present the results from a theoretical and
experimental study of the film flow of a non-Newtonian
fluid over an open-type rotating flat disk, with con-~
sideration of lag.

Formulation and solution of the problem. We as-
sume that the rheological equation of state for the
fluid is described by an exponential equation of the type
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The fluid is fed to the center of a rotation flat disk
and flows in the form of a thin continuous laminar
film. We will examine the motion of the fluid in a cy~
lindrical coordinate system r, ¢, z, rotating together
with the disk. 1)Let the effect of the force of gravity,
of the forces of surface tension, and of the frictional
forces relative to the ambient medium be insignificant;
2) let the thickness of the fluid film be incomparably
smaller than the radius of the disk corresponding to

that thickness; 3) let the relative velocity of fluid-
film motion be substantially smaller than the corre-
sponding circumferential velocity of the disk, and let
the order of the magnitude of the radial velocity and
of the lag velocity be identical; 4) let the flow of the
fluid over the disk be steady.

The fluid motion in this case is fully described by
the equations derived in [9]. The complete solutions
of these equations is presently impossible. The above-
cited conditions enable us to simplify these equations.

The resulting approximate equations have the form
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1t follows from Eq. (4) thatthe pressuredoes not change
through the thickness of the film, and that it is con-
stant and equal to the atmospheric pressure at the sur-
face of the film. Hence, 9p/or = 0.

Considerable mathematical difficulties are encoun-
tered in the direct integration of the flow equations (2)
and (3). We will therefore use the approximate method
of solution, based on the use of corresponding integral
relationships in place of Egs. (2) and (3) [see ref-
erence 10]. For this we first have to specify the form
of the velocity profile over the thickness of the film
layer. The accuracy of the solution will depend on the
extent to which the velocity profile has been properly
chosen, i.e., the extent to which the profile will ac-
curately reflect the true distribution of velocities
through the thickness of the layer. We will assume the
velocity profile to be the same as in the case of the
flow of a non-Newtonian fluid over a fitting in the event
of no lag [11]:
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To obtain the integral relationships, let us inte-
grate Eqs. (2) and (3) over z from 0 to &;. Then
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Having substituted (5) and (6) into the integral re-
lationships (7) and (8), we obtain
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Equations (9) and (10) contain three unknowns: vy max,
Ve maxs and 6,. To close the system, we will employ
the continuity equation.

Solution of the system of equations for Ve max yields
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Proceeding from Eqgs. (9) and (10), we can obtain
the relationship for the film thickness:
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The resulting equation (12) is not solved for 5;. Let
us introduce the new variables 8 and ¥:
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With (13) and (14), we simplify the form of Eq. (12):
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Fig. 1. Dimensionless radial velocity 8 versus com-
plex ¢¥: 1) n=0,1; 2) 0.2; 3) 0.3; 4) 0.4; 5) 0.6; 6) 0.8;
7) 1.0; 8) 1.5; 9) 2.0,
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This equation can be solved numerically. For this
we have to establish the limits of g8 and ¥. As we can
see from Eq. (15), their maximum values cannot be
larger than unity. Calculations show that the smallest
value of 8 which can be encountered in practice is on
the order of 1076,

For values of 3 < 107%, formula (15) can be pre-
sented—with sufficient accuracy—in the followingform:
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Figure 1 shows the curves of the functions ¥(g),
constructed from the numerical solution of Eq. (15)~—
the solid lines—and of Eq. (16)—the dashed lines.

As we can see from the figure, for small values of
B the curves plotted on the basis of formulas (15) and
(16) coincide. When 3 is increased, these curves be-
gin to differ, and when 8 = 1 the value of ¥ calculated
from (15) is equal to 1, while that value calculated ac-
cording to (16) is 0.50+1/2,

These curves enable us to determine the average
value for the radial velocity and the thickness of the
film. For this we have to know the fluid constants K,
n, and p. The operating conditions should give us q,
w, and r. We then calculate the value of . Having
determined the value of g from the curve, we can find
Vryay OF 6.

We have to determine the cases in which we must
use the data of this solution to find vy, 0x 8y, and in
which cases we should use the data from the solution
without consideration of the lag, as obtained in [11].
If we replace the dimensionless complexes in Eq. (16)
by their expressions and if we find the formula for
Vpays it would not be difficult to prove that this for-
mula can be used to determine the radial velocity de-
rived without consideration of the lag velocity. Thus if
B8 = 107%, we can use the solution of [11], while if g >
> 1072, we can use the data of this solution.

The value for the lag velocity can be found if we
proceed from relationship (11). However, it is not
completely convenient for use. If we introduce the
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Fig. 2. Dimensionless lag velocity o versus complex
Y 1) n = 0.1; 2) 0.2; 3) 0.3; 4) 0.4; 5) 0.6; 6) 0.8;
7) 1.0; 8) 1.5; 9) 2.0.

new variable o = Ve max/» /4 into this relationship,
then it assumes the form
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The simultaneous solution of Egs. (15) and (17) enables
us to associate o with the dimensionless complex ¥:
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Figure 2 shows the curves of the function a (), de-
rived from the numerical solution of this equation for
various n.

As we can see from the figure, with an increase in
¥ and n the value of @ increases. We know that an in-
crease in n leads to an increase in the value of the ef-
fective viscosity. Hence we can draw the conclusion
that an increase in the viscosity leads to an increase
in the lag velocity. This clearly contradicts the physi-
cal picture. However, such a contradiction would be
present only if the value of ¥ were kept constant. In
actual fact, however, the increase in n leads to a re-

duction in $—a reduction which, in the final analysis,
leads to a reduction in o,

To find the lag velocity v, max we have to caleu-
late the value of ¢ and determine « from the corre-
sponding curve. If we have to know the average lag
velocity through the thickness of the film, we should
use the following relationship:
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It would be interesting to compare our solution for
n = 1.0 with the existing Vachagin [6] solution. Calcu-
lations show that the deviation in the derived results
for Vo av and vp gy does not exceed 8—10%.

An experimental study of flow. To check the reli-
ability of the derived relationships, we should under-
take an experimental study of the flow. With this pur-
pose in mind, we devised the experimental installation
whose diagram and description have been given by the
present authors in [11]. While the test in {11] involved
the measurement of the fluid-film thickness, here it is
accomplished by measuring the average values of the
radial velocity and of the lag velocity by means of an
SKS~-1M motion-picture camera.

We used a 2.59% aqueous solution of carboxymethyl-
cellulose as the test fluid. We studied the rheological
properties of the solution by means of a single-scale
capillary viscosimeter. It developed that the flow of the
2.5%. aqueous solution of the carboxymethylcellulose in
the range lgvy = 2.8—5.5 can be described by an expo-
nential law with the rheological constants n = 0.67 and
K = 0.31 nsec/m?.

The tests were carried out on a flat disk 150 mm in
diameter. The experimental results are shown in
Fig. 3. As we can see from the figures, the experi-
mental pointg lie along the theoretical curves, with
the deviation not exceeding 15%. This permits us to
state that, on the one hand, the assumptions adopted in
the theoretical portion of this paper are valid, while
on the other hand, the chosen method of studying the
flow of a fluid over a rotating part is reliable.

NOTATION

T is the shear stress; vy is the shear velocity; K and
n are the rheological constants of fluid; &, is the thick-
ness of fluid film, v, is the radial velocity of fluid flow;
v, is the velocity of fluid lag relatively to tube sur-
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Fig. 3. Change of radial velocity (a) and mean lag velocity ()

(cm/sec) along tube radius (cm): 1) q = 3.0 10 °® m¥%/sec; « =

= 210 sec™?; 2) 2.0-107° and 293; 3) 1.5-107% and 262; 4) 3.0 -
-107% and 293; 5) 3.0 - 107° and 335; 6) 62.0°107° and 210.
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face; vy and v 5 are the value of radial velocity and
lag velocity mean with respect to film thickness, re-

spectively; vy max and vpmax are the maximum vel-
ocitiesatz = §y; qisthefluidrate; g is the dimension-
less radial velocity; ¢ is the dimensionless complex;

« is the dimensionless lag velocity.

REFERENCES

1. A. G. Kasatkin, Basic Processes and Equipment
of Chemical Technology [in Russian], Goskhimizdat,
1955. ’

2. A. P. Fokin, Spray Dryers {in Russian],
TsINTIAM, 1964. )

3. M. V. Lykov, Spray Drying [in Russian], Pishch-
epromizdat, 1955. .

4. M. V. Lykov and B. I. Leonchik, Spray Dryers
[in Russian], Izd. Mashinostroenie, 1966.

5. A. A. Aleksandrovskii and V. V. Kafarov, Trudy
Kazanskogo khimiko-tekhnologicheskogo instituta, 31,
3, 1963.

704

6. K. D. Vachagin and V. S. Nikolaev, Trudy Ka-
zanskogo khimiko~tekhnologicheskogo instituta, 27,
44, 1961.

7. L. A, Shklyar, N. V. Tyabin, E. P. Mosikhin,
and G. V. Vinogradov, Trudy Kazanskogo khimiko-
tekhnologicheskogo instituta, 18, 123, 1953.

8. K. D. Vachagin, N. Kh. Zinnatullin, and N. V.
Tyabin, IFZh [Journal of Engineering Physics], no. 2,
1965.

9. K. D. Vachagin, N. Kh. Zinnatullin, and N. V.
Tyabin, Trudy Kazanskogo khimiko-tekhnologicheskogo
instituta, 32, 157, 1964.

10. S. M. Targ, Fundamental Problems in the The-
ory of Laminary Flows [in Russian], GITTL, 1951.

11. N. Kh. Zinnatullin, K. D. Vachagin, and N. V.
Tyabin, Trudy Kazanskogo khiminko-tekhnologiches-
kogo instituta, 35, 146, 1965.

16 November 1967 Kirov Chemical Engineer-

ing Institute, Kazan



